# Real-Time Adaptive Resource Management

Sunondo Ghosh
PI's: Rakesh Jha, Walt Heimerdinger
Honeywell Technology Center
{sghosh, jha, walt}@htc.honeywell.com
612-951-7513 (phone), 612-951-7438 (fax)

## **Problem Statement**

Future embedded systems (SC-21, JSTARS, AWACS) will be characterized by dynamic variability in resource demands and availability:



Applications may be serial, parallel, or distributed, each with specific performance requirements. Resource needs may vary during execution due to data-dependence, changes in external environment etc.

#### Goal

Develop techniques for continual adaptive resource (re)allocation in response to a variety of dynamic triggers -- detected performance shortfall; application arrival, departure; direct request by applications or users, etc.

# **Resource Management Model**

Present resources to applications as a pool dynamically customizable to their needs

Based on QoS contracts and dynamic adaptation within contract.

Adaptations triggers caused by changes in resource demands and availability

Arrival/departure of applications

Direct request by applications/users

QoS deviations detected by ARM

Adaptations: QoS expansion, QoS reduction, reconfiguration and tuning.



### RTARM Architecture



ARM achieved by a hierarchy of service managers

**Vertical links = service composition** 

Horizontal links = application flow, or precedence, or QoS dependencies

**Negotiator negotiates contract for service** 

Allocator determines QoS feasibility

**Monitor monitors delivered QoS** 

**Detector detects QoS deviations** 

Adaptors selects adaptive response

**Enactor effects (re)allocations** 

# **Two-Stage Adaptation Structure**



**Adaptation across applications** 

QoS shrinkage, QoS expansion, preemption

**Adaptation within applications** 

Application reconfiguration, redistribution of resources across components

# **Results: Feedback Adaptation**



Continual resource reallocation to maintain throughput despite changing workload

Best-effort service for sensor-based multi-pipeline applications

Greedy processor reallocation, then assignment based on a) cascading, b) incremental branch and bound algorithm

6-stage multi-pipeline on a 16-node paragon on an ATR-based application

# **Results: QoS-Based Admission + Adaptation**



Decentralized negotiation and adaptation for multimedia stream applications

Guarantee critical apps at QoSmin, maximize # apps, try to achieve QoSmax for all apps

Negotiation protocol overhead: 20 ms for a negotiation spanning tree depth of 3; similar overhead for TCP/ATM, ATM/AAL5

Workload: 1 per sec. arrival of 30fps streams

Significant performance gains achieved from QoS shrinking and QoS expansion

# Steps for fault tolerance

- Fault detection triggers
  - Acceptance test in application
  - Self test in system (built-in test)
  - Timeout mechanism if system is fail silent
- Adaptation mechanisms
  - rerun adaptation protocol at successively higher levels
  - reallocate (or invalidate contract in necessary)
  - application can change request for quality if contract invalidated

# Adaptation Information Flows for Admission and Fault Adaptation



# Fault tolerance in RT-ARM

- Current triggers
  - application arrival, departure, or increased request for resources
  - top down
- New trigger: fault
  - bottom up
- Effect of new trigger
  - Either reallocation of contract to new resource
  - Or invalidation of contract
  - Application is informed

# Plan for work with JPL

- Demonstrate adaptation infrastructure with potential for fault tolerance
  - Host on JPL testbed (current prototype on Solaris/NT & ATM networks)
  - Respond to testbed-triggered faults
- Jointly develop QoS-aware applications
  - Integrate QoS-aware applicatio with adaptation infrastructure

# What we need from JPL

- Fault detection mechanisms
- QoS aware applications
- Information about current applications
- Access to JPL testbed
- Funding

# **Timeframe**

- Developing QoS aware applications will take time
- Adding fault tolerance to RT-ARM can be done in parallel

# Other issues

- Execution: To be decided, preferably over internet
- What will be left behind: Nothing at the present time, adaptation infrastructure and algorithms in the future